

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-11/0344 of 2022/09/20

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:	BOSSONG BCR EPOXY 21
Product family to which the above construction product belongs:	Bonded anchor with anchor rod for use in concrete under static, quasi-static or seismic action (performance category C2)
Manufacturer: Manufacturing plant:	BOSSONG SPA Via Enrico Fermi 51 IT-24050 Grassobbio (Bg) Tel. +39 035 3846 011 Fax +39 035 3846 012 Internet www.bossong.com BOSSONG SPA Via Enrico Fermi 51 IT-24050 Grassobbio (Bg)
This European Technical Assessment contains:	24 pages including 19 annexes which form an integral part of the document
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of:	EOTA EAD 330499-01-0601, "Bonded fasteners for use in concrete"
This version replaces:	The ETA with the same number issued on 2013-12- 06

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (except the confidential Annexes referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product

Technical description of the product

The BOSSONG BCR EPOXY 21 is a bonded anchor (injection type) consisting of an injection mortar cartridge equipped with a special mixing nozzle and threaded anchor rod of the sizes M8 to M30 made of:

- galvanized carbon steel
- stainless steel A4-70, A4-80 or high corrosion resistant stainless steel with hexagon nut and washer.

The threaded rod is placed into a drilled hole previously injected (using an applicator gun) with a mortar with a slow and slight twisting motion. The anchor rod is anchored by the bond between rod, mortar and concrete.

The threaded rod is available for all diameters with three type of tip end a one side 45° chamfer, a two sided 45° chamfer or a flat. The threaded rods are either delivered with the mortar cartridges or commercial standard threaded rods purchased separately. Each mortar cartridge is marked with the identifying mark of the producer and with the trade name. The mortar cartridges are available in different sizes.

The anchor in the range of M8 to M30 and the mortar cartridges corresponds to the drawings given in the Annex A

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation¹ of this European Technical Assessment.

2 Specification of the intended use in accordance with the applicable European Assessment Document (hereinafter EAD)

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

¹ The technical documentation of this European Technical Assessment is deposited at ETA-Danmark and, as far as relevant for the tasks of the Notified bodies involved in the attestation of conformity procedure, is handed over to the notified bodies.

3 Performance of the product and references to the methods used for its assessment

3.1 Characteristics of product

Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annex C.

Safety in case of fire (BWR 2):

No performance assessed.

Hygiene, health and the environment (BWR3):

No performance assessed

Safety in use (BWR4):

For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BWR1).

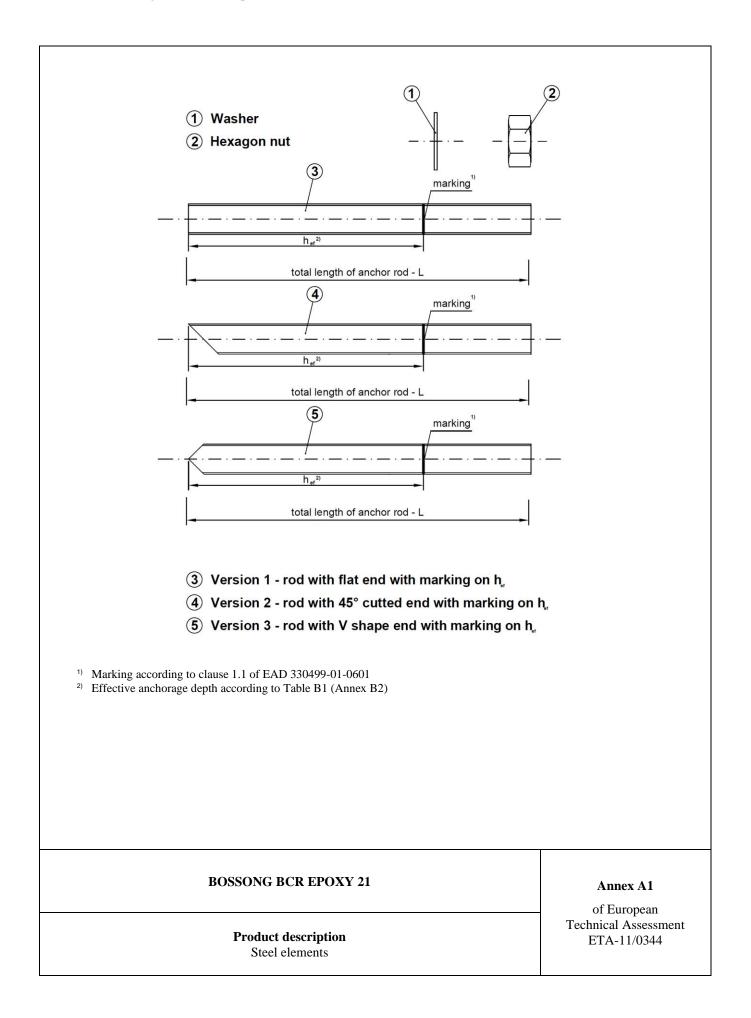
Other Basic Requirements are not relevant.

3.2 Methods of assessment

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with EOTA EAD 330499-01-0601, "Bonded fasteners for use in concrete".

4 Attestation and verification of constancy of performance (AVCP)

4.1 AVCP system

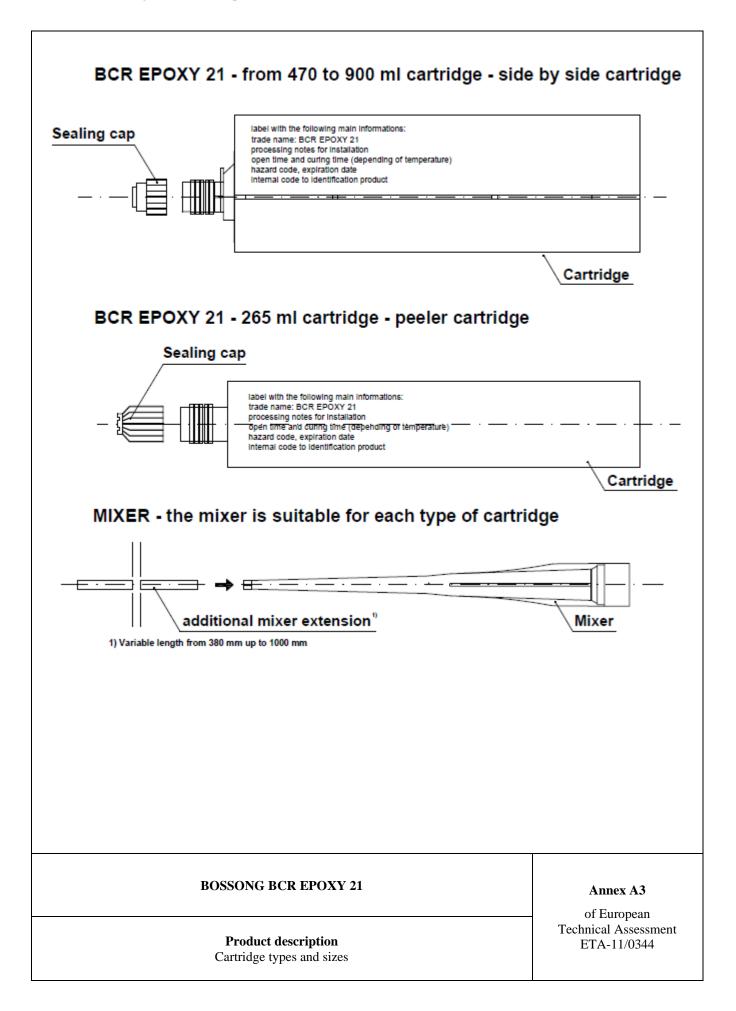

According to the decision 96/582/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.

5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking

Issued in Copenhagen 2022-09-20 by

Thomas Bruun Manager, ETA-Danmark


Designation		Material			
Steel, zinc plated					
electroplated $\geq 5 \ \mu m$ acc. to	EN ISO 4042				
hot-dip galvanized \geq 40 μ m	acc. to EN ISO 1461	1	1	1	
Threaded rod	Property class	Characteristic steel ultimate strength	Characteristic steel yield strength	Fracture elongation	
	4.8	$f_{uk} \geq 400 \ N/mm^2$	$f_{yk} \geq 320 \ N/mm^2$	$A_5 > 8\%^{1)}$	
	5.8	$f_{uk} \geq 500 \ N/mm^2$	$f_{yk} \geq 400 \ N/mm^2$	$A_5 > 8\%^{1)}$	EN ISO 898-
	8.8	$f_{uk} \geq 800 \ N/mm^2$	$f_{yk} \geq 640 \ N/mm^2$	$A_5 \! \geq \! 12\%^{1)}$	
7asher tainless steel A2 tainless steel A4 (igh corrosion resistance stainless	10.9	$f_{uk} \geq 1000 \ N/mm^2$	$f_{yk} \geq 900 \ N/mm^2$	$A_5 > 9\%$	
Hexagon nut	4	for class 4.8 rods			
	5	for class 5.8 rods			EN 898-2
	8	for class 8.8 rods		EN 898-2	
	10	for class 10.9 rods			
Washer	Steel, accord	ing to EN ISO 7089; corre	esponding to anchor rod	material	
Stainless steel A2		(Materials)	1.4301, 1.4307, 1.4567,	1.4541	
Stainless steel A4		(Materials)	1.4401, 1.4404, 1.4571,	1 4362 1 4578	
		(1.4302,1.4370	
High corrosion resistance s	tainless steel (HCR)		1.4529, 1.4565	1.4302,1.4370	
High corrosion resistance st Threaded rod	tainless steel (HCR) Property class			Fracture elongation	
Vasher Stainless steel A2 Stainless steel A4 High corrosion resistance stainless st Threaded rod	Property	(Materials) Characteristic steel	1.4529, 1.4565 Characteristic steel	Fracture	EN 10088
	Property class	(Materials) Characteristic steel ultimate strength	1.4529, 1.4565 Characteristic steel yield strength	Fracture elongation	
Ū.	Property class 50	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	1.4529, 1.4565Characteristic steel yield strength $f_{yk} \ge 210 \text{ N/mm}^2$	Fracture elongation $A_5 > 8\%^{1)}$	
Ŭ	Property class5070	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	1.4529, 1.4565Characteristic steel yield strength $f_{yk} \ge 210 \text{ N/mm}^2$ $f_{yk} \ge 450 \text{ N/mm}^2$	$\label{eq:rescaled} \begin{array}{c} \textbf{Fracture}\\ \textbf{elongation}\\ A_5 > 8\%^{1)}\\ A_5 \ge 12\%^{1)} \end{array}$	EN ISO 3506
Threaded rod	Property class 50 70 80	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	1.4529, 1.4565Characteristic steel yield strength $f_{yk} \ge 210 \text{ N/mm}^2$ $f_{yk} \ge 450 \text{ N/mm}^2$	$\label{eq:rescaled} \begin{array}{c} \textbf{Fracture}\\ \textbf{elongation}\\ A_5 > 8\%^{1)}\\ A_5 \ge 12\%^{1)} \end{array}$	EN ISO 3506
Threaded rod	Property class 50 70 80 50	$\label{eq:constraint} \begin{array}{ c c } \hline \textbf{(Materials)} \\ \hline \textbf{Characteristic steel} \\ \textbf{ultimate strength} \\ \hline f_{uk} \geq 500 \text{ N/mm}^2 \\ \hline f_{uk} \geq 700 \text{ N/mm}^2 \\ \hline f_{uk} \geq 800 \text{ N/mm}^2 \\ \hline f_{or} \ class \ 50 \ rods \end{array}$	1.4529, 1.4565Characteristic steel yield strength $f_{yk} \ge 210 \text{ N/mm}^2$ $f_{yk} \ge 450 \text{ N/mm}^2$	$\label{eq:rescaled} \begin{array}{c} \textbf{Fracture}\\ \textbf{elongation}\\ A_5 > 8\%^{1)}\\ A_5 \ge 12\%^{1)} \end{array}$	EN ISO 3506
Threaded rod	Property class 50 70 80 50 70 80 50 70 80	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	1.4529, 1.4565Characteristic steel yield strength $f_{yk} \ge 210 \text{ N/mm}^2$ $f_{yk} \ge 450 \text{ N/mm}^2$ $f_{yk} \ge 600 \text{ N/mm}^2$	$\label{eq:result} \begin{array}{l} \mbox{Fracture elongation} \\ \mbox{$A_5 > 8\%^{1}$} \\ \mbox{$A_5 \ge 12\%^{1}$} \\ \mbox{$A_5 \ge 12\%^{1}$} \\ \mbox{$A_5 \ge 12\%^{1}$} \end{array}$	EN ISO 3506
Threaded rod Hexagon nut Washer ⁽⁾ For seismic performance cate Commercial standard threaded – material and mecha – confirmation of ma – marking of the three Note: Commercial standard th	Property class 50 50 70 80 50 70 80 50 70 80 Steel, accord egory C2, $A_5 > 12\%$ d rods may be used, with: anical properties accordinaterial and mechanical preventies accordinaterial accordi	(Materials)Characteristic steel ultimate strength $f_{uk} \ge 500 \text{ N/mm}^2$ $f_{uk} \ge 700 \text{ N/mm}^2$ $f_{uk} \ge 800 \text{ N/mm}^2$ for class 50 rodsfor class 70 rodsfor class 80 rodsing to EN 10088; correspondentmg to Table A3, operties by inspection cer liment depth.	1.4529, 1.4565 Characteristic steel yield strength $f_{yk} \ge 210 \text{ N/mm}^2$ $f_{yk} \ge 450 \text{ N/mm}^2$ $f_{yk} \ge 600 \text{ N/mm}^2$ onding to anchor rod ma tificate 3.1 according to	Fracture elongation $A_5 > 8\%^{1)}$ $A_5 \ge 12\%^{1)}$ $A_5 \ge 12\%^{1)}$ etrial	EN ISO 3500
Threaded rod Threaded rod Hexagon nut Washer ^D For seismic performance cate Commercial standard threaded – material and mecha – confirmation of ma – marking of the threaded	Property class 50 50 70 80 50 70 80 50 70 80 Steel, accord egory C2, $A_5 > 12\%$ d rods may be used, with: anical properties accordinaterial and mechanical preventies accordinaterial accordi	(Materials)Characteristic steel ultimate strength $f_{uk} \ge 500 \text{ N/mm}^2$ $f_{uk} \ge 700 \text{ N/mm}^2$ $f_{uk} \ge 800 \text{ N/mm}^2$ for class 50 rodsfor class 70 rodsfor class 80 rodsing to EN 10088; correspondentmg to Table A3, operties by inspection cer liment depth.	1.4529, 1.4565 Characteristic steel yield strength $f_{yk} \ge 210 \text{ N/mm}^2$ $f_{yk} \ge 450 \text{ N/mm}^2$ $f_{yk} \ge 600 \text{ N/mm}^2$ onding to anchor rod ma tificate 3.1 according to	Fracture elongation $A_5 > 8\%^{1)}$ $A_5 \ge 12\%^{1)}$ $A_5 \ge 12\%^{1)}$ etrial	EN ISO 3506

	1104400	composition
1		
	BOSSONG BCR EPOXY 21	Additive: quartz
	two component injection mortars	Bonding agent: epoxy resin

BOSSONG BCR EPOXY 21

Product description Materials Annex A2

of European Technical Assessment ETA-11/0344

Specifications of intended use

Use:

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirement 1 (EU) 305/2011 shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences

Anchors subject to:

Static and quasi-static loads: sizes from M8 to M30.

Seismic performance category C2: sizes M16 to M24, rods with f_{uk} \leq 800 N/mm^2 and A_5 \geq 12%

Base material:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum to C50/60 at maximum according to EN 206-1.
- Non-cracked concrete: sizes from M8 to M30.
- Cracked concrete: sizes from M12 to M24.

Temperature range:

The anchors may be used in the following temperature range:

- -40° C to $+40^{\circ}$ C (max. short term temperature $+40^{\circ}$ C and max. long term temperature $+24^{\circ}$ C).
- -40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C).

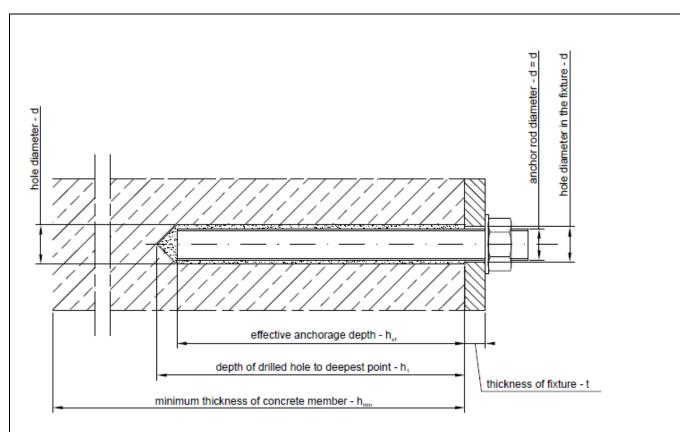
Use conditions (environmental conditions):

- Structures subject to dry internal conditions: all materials according to Table A1.
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class: Stainless steel A2 according to Annex A4, Table A1: CRC II

Stainless steel A4 according to Annex A4, Table A1: CRC III

High corrosion resistance steel HCR according to Annex A4, Table A1: CRC V

Installation:


- Dry or wet concrete (use category I1): sizes from M8 to M30.
- Flooded holes with the exception of seawater (use category I2): sizes from M8 to M30.
- Installation direction D3 (downward and horizontal and upwards installation): sizes from M8 to M30.
- The anchors are suitable for hammer drilled holes (HD) and for compressed air drill (CA): sizes from M8 to M30.

Design methods:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static loads are designed in accordance to EN 1992-4 and Technical Report TR055.
- Anchorages under seismic actions are designed in accordance to EN 1992-4 and Technical Report TR045.

BOSSONG BCR EPOXY 21

Intended use Specifications Annex B1 of European Technical Assessment ETA-11/0344

Table B1: Installation data for threaded rods

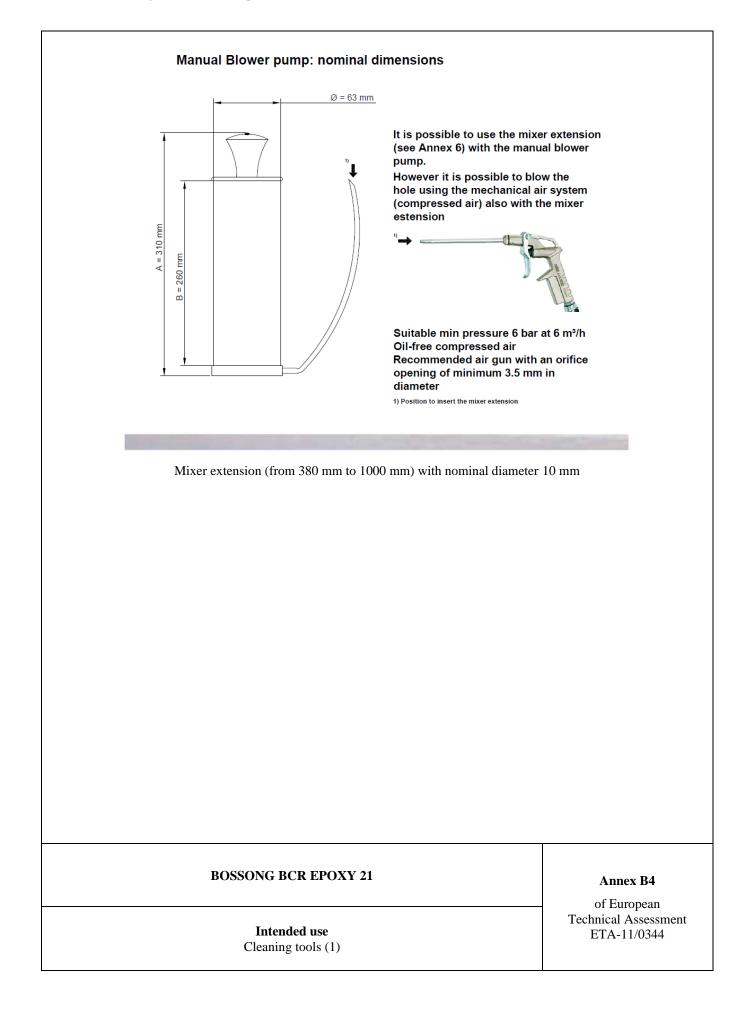
Size	Size		M10	M12	M16	M20	M24	M27	M30
Nominal drilling diameter	d ₀ [mm]	10	12	14	18	24	28	30	35
Maximum diameter hole in the fixture	d _{fix} [mm]	9	12	14	18	22	26	30	33
Effective embedment depth	h _{ef,min} [mm]	60	60	70	80	90	96	110	120
	h _{ef,max} [mm]	160	200	240	320	400	480	540	600
Depth of the drilling hole	h1 [mm]				$h_{ef} + $	5 mm			
Minimum thickness of the concrete slab	h _{min} [mm]	$h_{ef} + 3$	$0 \text{ mm}; \ge 10$	00 mm	$h_{ef} + 2d_0$				
Maximum setting torque moment	T _{fix} [Nm]	10	20	40	80	130	200	270	300
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

BOSSONG BCR EPOXY 21

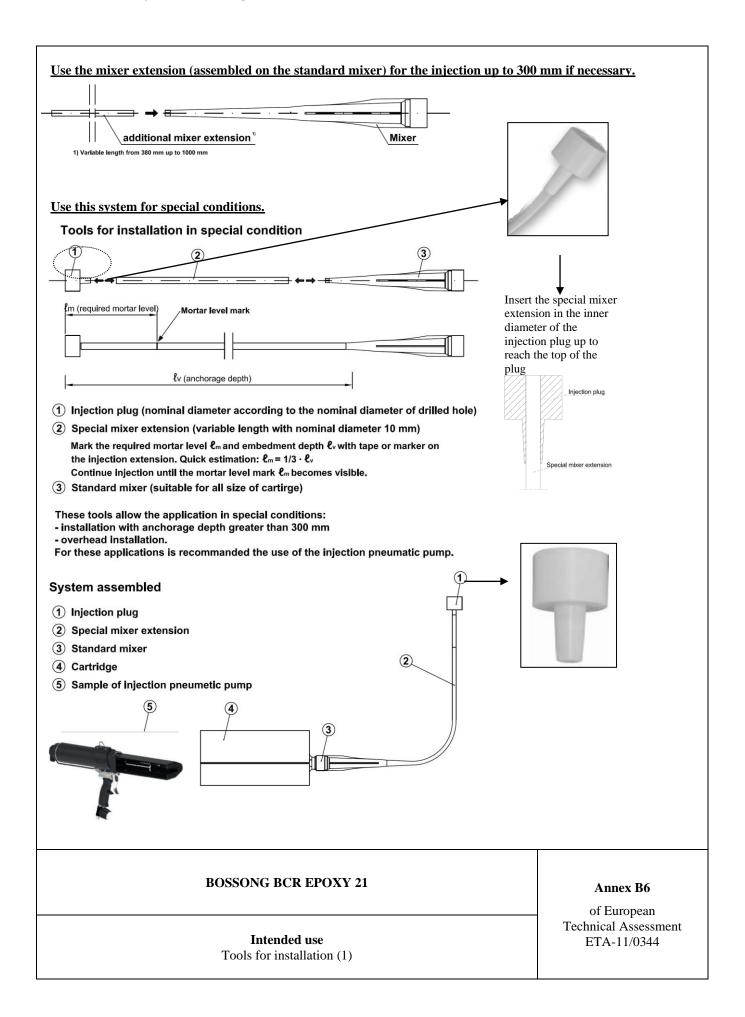
Intended use Installation data for threaded rods Annex B2 of European Technical Assessment ETA-11/0344

Table B2: Maximum processing time and minimum curing time

Concrete temperature	Working Time	Minimum curing time
$0^{\circ}C^{2)}$	3 h 20 min	96 h
$5^{\circ}C^{2)}$	2 h 30 min	48 h
10°C	1 h 40 min	28 h
15°C	1 h 10 min	22 h
20°C	50 min	16 h
25°C	30 min	14 h
30°C	20 min	12 h


1) The minimum time from the end of the mixing to the time when the anchor is loaded

2) Minimum resin temperature recommended, for injection between 5°C and 0°C, equal to 10°C.


3) Max resin temperature of 24°C for installation at maximum setting depth

BOSSONG BCR EPOXY 21

Intended use Maximum processing time and minimum torque and curing time Annex B3 of European Technical Assessment ETA-11/0344

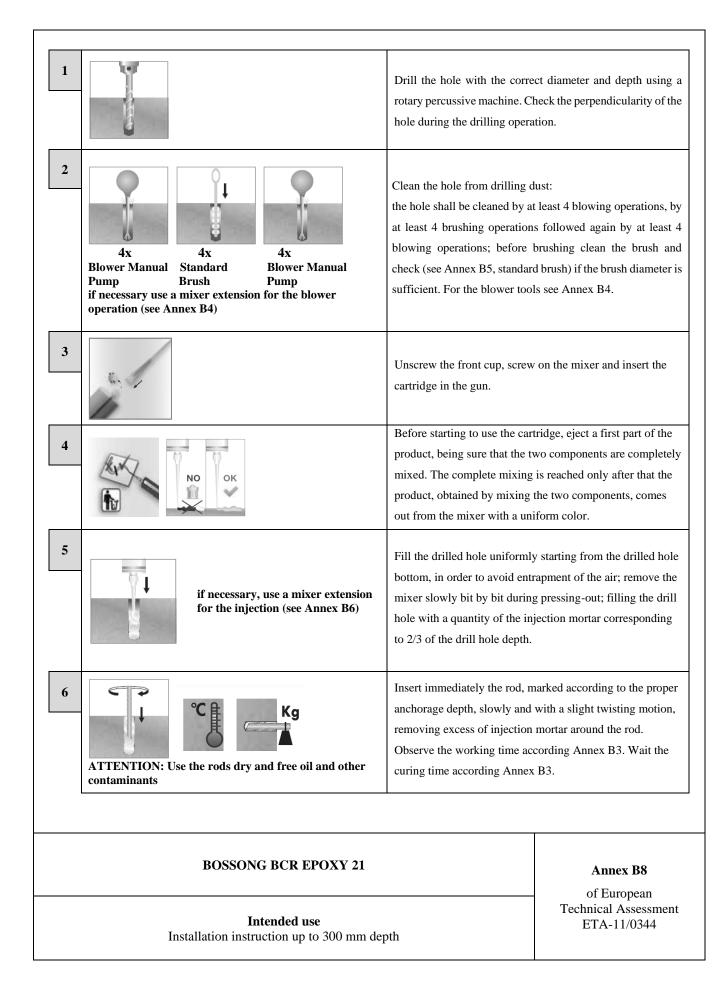
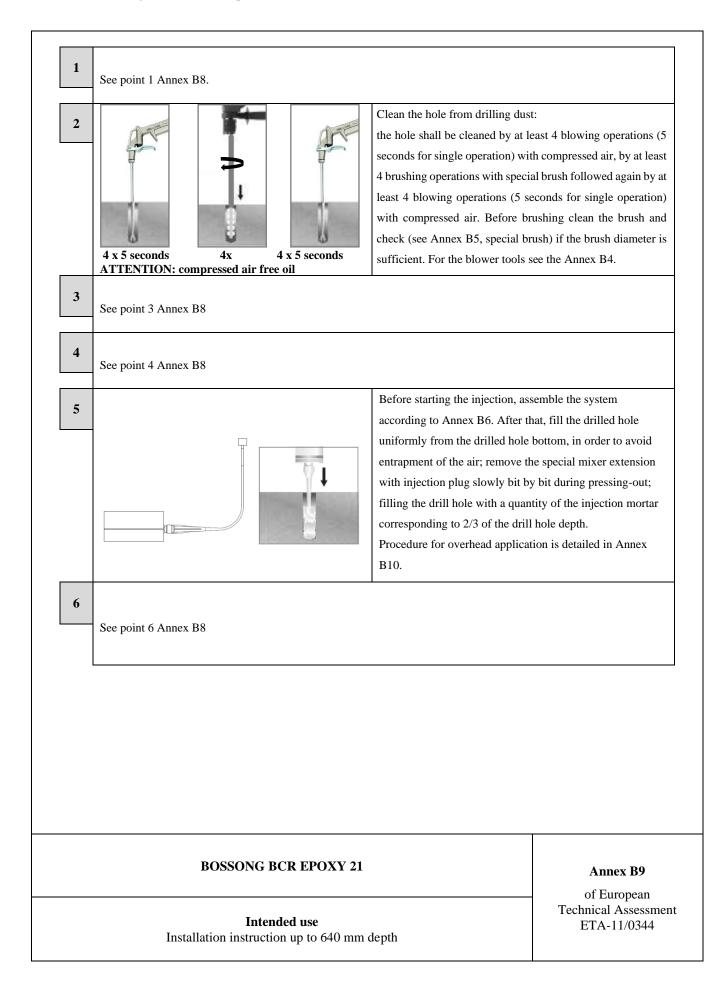
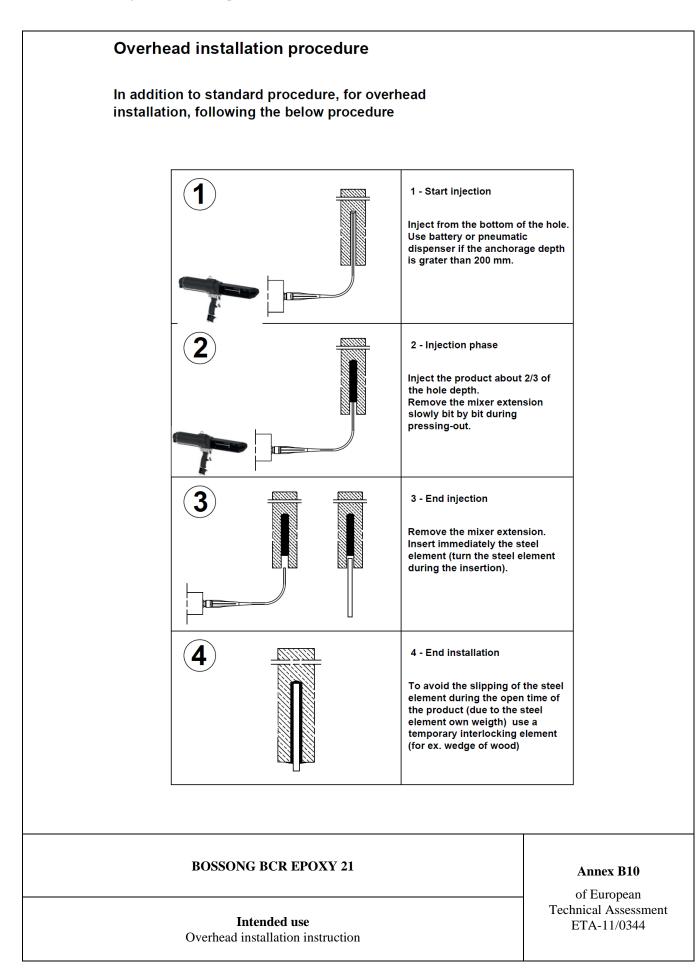


Table B3	: Standard brush diameter	for threaded	rods											
T	hreaded rod diameter	M8	M10	M12	M16	M20	M24	M27	M30					
d ₀	Nominal drill hole [mm]	10	12	14	18	24	28	30	35					
d _b	Brush diameter [mm]	12	14	16	20	26	30	35	37					
(1) Steel bristles 2) Steel stem 3) Wood handle 4: Special brush diameter (m	3 The chanical braining of the change of the	15h) for f	hreaded rod	s									
	hreaded rod diameter	M16		M20		24	M27		M30					
2 3 4	de Nominal drill hole [mm] 18 24 28 30 35 de Brush diameter [mm] 20 26 30 32 37 de Brush diameter [mm] 20 26 30 32 37 e Steel bristles 3 3 36 37 37 e Steel bristles 3 36 37 37 f Steel bristles 3 36 37 37 f Steel bristles 3 37 37 37 f Steel bristles 3 36 37 37 37 f Steel stem 3 37 37 37 37 f Brush on special brush 30 37 37 37 37 f Drilling tool connection (SDS connection) 37 37 37 37 37 f Brush diameter [m] 20 37 37 37 37 37 f Drilling tool connection (SDS connection) 37 37 37 3													
	BOS	SSONG BCI	d use	Y 21				Annex B5 of European Technical Assessment ETA-11/0344						




	Table B5: Mortar injection dispensers			
	Injection dispensers	Cartridges	Clean hole tools	Maximum depth of the drill hole
	Manual	265 ml	Blower pump or compressed air and standard brush or special brush	300 mm*
	Manual	470 ml 900 ml	Blower pump or compressed air and standard brush or special brush	300 mm*
	Battery	265 ml 470 ml	Compressed air and special brush	300 mm to 600 mm*
	Pneumatic	470 ml 900 ml	Compressed air and special brush	300 mm to 600 mm*
No	te: use the mixer extension described in Annex E	36 for the injectio	on of the mortar	
	BOSSONG BCR Intended Tools for insta		Annex B7 of European Technical Assessment ETA-11/0344	

Page 16 of 24 European Technical Assessment ETA-11/0344, issued on 2022-09-xx

Page 17 of 24 European Technical Assessment ETA-11/0344, issued on 2022-09-xx

Size			M8	M10	M12	M16	M20	M24	M27	M30		
Steel failure – characteristic tension res	sistance											
Steel class 4.8	N _{Rk,s}	[kN]	15	23	34	63	98	141	183	224		
Steel class 5.8	N _{Rk,s}	[kN]	18	29	42	78	122	176	229	280		
Steel class 8.8	N _{Rk,s}	[kN]	29	46	67	126	196	282	367	449		
Steel class 10.9	N _{Rk,s}	[kN]	37	58	84	157	245	353	459	561		
Stainless steel A2, A4, HCR class 50	N _{Rk,s}	[kN]	18	29	42	78	122	176	229	280		
Stainless steel A2, A4, HCR class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	321	392		
Stainless steel A4, HCR class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	367	449		
Steel failure – characteristic tension res		rtial fact	or	1	1			r	1			
Steel class 4.8	γ _{Ms,N} ¹⁾	[-]	-			1	50					
Steel class 5.8	$\gamma_{Ms,N}^{Ms,N}$	[-]					50					
Steel class 8.8	$\gamma_{Ms,N}^{1}$	[-]					50					
Steel class 10.9	$\gamma_{Ms,N}^{Ms,N}$	[-]					40					
Stainless steel A2, A4, HCR class 50	$\gamma_{Ms,N}^{Ms,N}$	[-]					86					
Stainless steel A2, A4, HCR class 70	$\gamma_{Ms,N}^{Ms,N}$	[-]				,	87					
Stainless steel A4, HCR class 80	$\gamma_{Ms,N}^{1}$	[-]										
Steel failure – characteristic shear resis			rm									
Steel class 4.8	V ⁰ _{Rk,s}	[kN]	7	12	17	31	49	71	92	112		
Steel class 5.8	V ⁰ _{Rk,s}	[kN]	9	12	21	39	61	88	115	140		
Steel class 8.8	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224		
Steel class 10.9	V Rk,s	[kN]	13	23	42	78	122	141	230	224		
Stainless steel A2, A4, HCR class 50	V ⁰ _{Rk,s}	[kN]	9	14	21	39	61	88	115	140		
Stainless steel A2, A4, HCR class 50 Stainless steel A2, A4, HCR class 70	V ⁰ _{Rk,s}	[kN]	13	20	29	55	86	124	160	140		
Stainless steel A4, HCR class 80	V ⁰ _{Rk,s}	[kN]	15	20	34	63	98	124	184	224		
Steel failure – characteristic shear resis	1		15	23	54	05	70	141	104	224		
		1	1.5	20	52	100	2.00	4.40		000		
Steel class 4.8	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900		
Steel class 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	561	832	1125		
Steel class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898	1331	1799		
Steel class 10.9	M ⁰ _{Rk,s}	[Nm]	37	75	131	333	649	1123	1664	2249		
Stainless steel A2, A4, HCR class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	166	324	561	832	1124		
Stainless steel A2, A4, HCR class 70 Stainless steel A4, HCR class 80	M ⁰ _{Rk,s} M ⁰ _{Rk,s}	[Nm] [Nm]	26 30	52 60	92 105	233 266	454 519	786 898	1165 1331	1574 1799		
				00	105	200	519	090	1551	1795		
Steel failure – characteristic shear resis	-	-				1	25					
Steel class 4.8	$\gamma_{Ms,V}$ ¹⁾	[-]					25					
Steel class 5.8	$\gamma_{Ms,V}$ ¹⁾	[-]					25					
Steel class 8.8	$\gamma_{Ms,V}$ ¹⁾	[-]					25					
Steel class 10.9	$\gamma_{Ms,V}^{(1)}$	[-]					50 28					
Stainless steel A2, A4, HCR class 50	$\gamma_{Ms,V}$ ¹⁾	[-]					38					
Stainless steel A2, A4, HCR class 70 Stainless steel A4, HCR class 80	$\gamma_{Ms,V}$ ¹⁾ $\gamma_{Ms,V}$ ¹⁾	[-] [-]					56 33					

Fracture elongation threaded rod for seismic C2 must be $A_5 \ge 12\%$. Steel classes 10.9 are not covered for seismic application.

 $^{\scriptscriptstyle 1)} In$ the absence of national regulation

BOSSONG BCR EPOXY 21

Annex C1 of European

Performances

Characteristic values for steel tension resistance and steel shear resistance for threaded rods

Technical Assessment ETA-11/0344

Size			M8	M10	M12	M16	M20	M24	M27	M30		
Steel failure												
Characteristic resistance	N _{Rk,s}	[kN]			Se	e Annex C	1 – Table	C1				
Partial factor	γ _{Ms,N}	[-]			Se	e Annex C	1 – Table	C1				
Combined pull-out and concrete co	ne failure in	non-cracked	l concrete C20/25									
Characteristic bond resistance temperature range -40°C / +40°C Characteristic bond resistance	$\tau_{Rk,ucr}$	[N/mm ²]	12,0	11,0	11,0	11,0	10,0	10,0	10,0	10,0		
temperature range -40°C / +80°C	τ _{Rk,ucr}	[N/mm ²]	9,0	8,5	8,5	7,0	7,0	7,0	7,0	7,0		
Reduction factor ψ^{0}_{sus} for non-crack	ted concrete	1										
Sustained load factor temperature range -40°C / +40°C	$\psi^0{}_{sus}$	[-]				0,	73					
Sustained load factor temperature range -40°C / +80°C	$\psi^0{}_{sus}$	[-]	0,73									
Increasing factor for non-cracked concrete related to strength f _{ck}	$\psi_{\rm c}$	[-]	$(f_{ck}/20)^{0,2}$									
Concrete cone failure												
Factor for non-cracked concrete	k _{ucr,N}	[-]				11	,0					
Edge distance	C _{cr,N}	[mm]				1,5	\mathbf{h}_{ef}					
Spacing	$\mathbf{S}_{\mathrm{cr},\mathrm{N}}$	[mm]				3,0	· h _{ef}					
Splitting failure												
			$S_{cr,Nsp} = 4,0 \cdot h_{ef}$ If $h_{min} < h < 2 \ h_{ef}$									
Spacing	S _{cr,Nsp}	[mm]		$If h_{min} < h < 2 h_{ef}$ $h = 2h_{ef}$ h_{min} $S_{cr,Nsp} = interpolate values$ $if h \ge 2 h_{ef}$ $S_{cr,Nsp} = 2 h_{ef}$								
Edge distance	C _{cr,Nsp}	[mm]				0,5 ·	S _{cr,sp}					
Installation factor for combined pul	l-out, concre	ete cone and	splitting f	failure								
Installation factors for category I1	γ _{inst}	[-]				1	,0					
Installation factors for category I2	7 mar					1.	,2					

Characteristic values tension resistance load in non-cracked concrete for threaded rod under static and quasi-static loads

ETA-11/0344

Size			M12	M16	M20	M24
Steel failure						
Characteristic resistance	N _{Rk,s}	[kN]		See Annex (C1 – Table C1	
Partial factor	$\gamma_{Ms,N}$	[-]		See Annex (C1 – Table C1	
Combined pull-out and concrete co	one failur	e in cracked	concrete C20/25			
Characteristic bond resistance	τ _{Rk,cr}	[N/mm ²]	7,0	7,0	7,0	7,0
temperature range -40°C / +40°C Characteristic bond resistance temperature range -40°C / +80°C	$ au_{Rk,cr}$	[N/mm ²]	5,5	5,5	5,5	5,5
Reduction factor ψ^0_{sus} for cracked	concrete					
Sustained load factor temperature range -40°C / +40°C	$\psi^0_{\ sus}$	[-]		0	,73	
Sustained load factor temperature range -40°C / +80°C	$\psi^0{}_{sus}$	[-]		0	,73	
Increasing factor for cracked concrete related to strength f _{ck}	$\psi_{\rm c}$	[-]		1	,00	
Concrete cone failure						
Factor for cracked concrete	k _{cr,N}	[-]			7,7	
Edge distance	$C_{\rm cr,N}$	[mm]		1,	5 h _{ef}	
Spacing	$S_{\mathrm{cr},\mathrm{N}}$	[mm]		3,	0 h _{ef}	
Splitting failure						
				If h	= h _{min}	
				S _{cr,Nsp}	$=4,0\cdot\mathbf{h}_{\mathrm{ef}}$	
				If h _{min} <	$h < 2 h_{ef}$	
Spacing	S _{cr,Nsp}	[mm]		if h S _{cr,Nsp}	$\frac{4h_{ef}}{2} S_{erN,sp}$ rpolate values $\geq 2 h_{ef}$ $= 2 h_{ef}$	
Edge distance	$C_{cr,Nsp}$	[mm]		0,5	· S _{cr,sp}	
Installation factor for combined p	ull-out, co	ncrete cone	and splitting failure	,		
Installation factors for category I1	γ_{inst}	[-]		i	1,0	
Installation factors for category I2	j mst				1,2	
	BOSSC	ONG BCR	EPOXY 21			Annex C3 of European

Size			M8	M10	M12	M16	M20	M24	M27	M30	
Steel failure without lever arm											
Characteristic resistance	$V^0_{\ Rk,s}$	[kN]			Se	e Annex C	21 – Table	C1			
Partial factor	$\gamma_{Ms,V}$	[-]	See Annex C1 – Table C1								
Ductility factor	k ₇	[-]	1,0								
Steel failure with lever arm											
Characteristic resistance	${{M^0}_{Rk,s}}$	[kN]			See	e Annex C	21 – Table	C1			
Partial factor	γ _{Ms,V}	[-]			Se	e Annex C	21 – Table	C1			
Concrete pry out failure											
Factor	k ₈	[-]				2	,0				
Installation factor	γ_{inst}	[-]				1	,0				
Concrete edge failure											
Effective length of anchor under shear loading	l _f	[-]			$l_f = h_{ef}$ and	$d \le 12 d_{nor}$	n		≤ max	n _{ef} and (8 d _{nom;} , mm)	
Installation factor	γ_{inst}	[-]				1	,0		1		

BOSSONG BCR EPOXY 21

Annex C4 of European Technical Assessment ETA-11/0344

Performances Characteristic values shear resistance load in non- cracked and cracked concrete for threaded rod under static and quasi-static loads.

 Table C5. Displacement under tension loads for non-cracked concrete – threaded rods under static and quasi-static loads for all drilling method

Size	M8	M10	M12	M16	M20	M24	M27	M30		
Characteristic displacement in non-cracked concrete C20/25 to C50/60 under tension loads										
Temperature range -40°C / +40°C	δ_{N0}	[mm/(N/mm ²)]	0,01	0,02	0,03	0,03	0,03	0,03	0,04	0,05
	δ_{N^∞}	[mm/(N/mm ²)]	0,04	0,04	0,04	0,04	0,04	0,04	0,05	0,05
	δ_{N0}	[mm/(N/mm ²)]	0,02	0,03	0,04	0,04	0,04	0,05	0,06	0,07
Temperature range -40°C / +80°C	δ_{N^∞}	[mm/(N/mm ²)]	0,06	0,06	0,06	0,07	0,07	0,07	0,07	0,07

Table C6: Displacement under tension loads for -cracked concrete – threaded rods under static and quasi-static loads for all drilling method

Size			M12	M16	M20	M24	
Characteristic displacement in cracked concrete C20/25 to C50/60 under tension loads							
Temperature range -40°C / +40°C	δ_{N0}	[mm/(N/mm ²)]	0,06	0,06	0,06	0,07	
	δ_{N^∞}	[mm/(N/mm ²)]	0,26	0,24	0,26	0,23	
Temperature range -40°C / +80°C	δ_{N0}	[mm/(N/mm ²)]	0,07	0,08	0,08	0,09	
	δ_{N^∞}	[mm/(N/mm ²)]	0,33	0,33	0,33	0,33	

Table C7: Displacement under shear loads for non-cracked and cracked concrete – threaded rods under static and quasi-static loads for all drilling method.

Size			M8	M10	M12	M16	M20	M24	M27	M30
Characteristic displacement in cracked and non-cracked concrete C20/25 to C50/60 under shear loads										
All temperature ranges	δ_{V0} factor	[mm/kN]	0,024	0,020	0,019	0,011	0,007	0,006	0,005	0,005
	$\delta_{V^{\infty}}$ factor	[mm/kN]	0,036	0,030	0,030	0,017	0,011	0,009	0,007	0,008

BOSSONG BCR EPOXY 21

Performances Displacement under service loads

Annex C5 of European

of European Technical Assessment ETA-11/0344

Size			M16	M20	M24	
Steel failure						
Characteristic resistance	N _{Rk,s,eq,C2}	[kN]	1,0 x N _{Rk,s}			
Partial factor	γ _{Ms,N}	[-]	See Annex C1 – Table C1			
Combined pull-out and concrete cone failure	·	· ·				
Characteristic bond resistance temperature range -40°C / +40°C	$\tau_{Rk,C2}$	[N/mm ²]	2,9	2,8	2,6	
Characteristic bond resistance temperature range -40°C / +80°C	$\tau_{Rk,C2}$	[N/mm ²]	2,2	2,1	2,0	
	Ψ_{c}	[-]	1,0			
Increasing factor related to concrete strength f_{ck}			1,0			
Increasing factor related to concrete strength f _{ck} Installation factors for category I1	γ _{inst}	[-] -		1,0		

Table C9: Characteristic values shear resistance load for threaded rod for seismic performance category C2

Size	M16	M20	M24			
Steel failure						
Characteristic resistance	V _{Rk,s,eq,C2}	[kN]	25	39	56	
Partial factor ¹⁾	γ _{Ms} ,v	[-]	See Annex C1 – Table C1			

Table C10: Reduction factor for annular gap.

Reduction factor for annular gap							
Without annular gap filling	α_{gap}	[-]	0,5				
With annular gap filling	α_{gap}	[-]	1,0				

Table C11: Displacements for tensile and shear load for seismic performance category C2 - threaded rod.

Size	M16	M20	M24					
Displacements for tensile and shear load for seismic performance category C2								
Displacement in tensile at damage limitation states	$\delta_{N,eq,seis(DLS)}$	[mm]	0,27	0,92	0,54			
Displacement in tensile at ultimate limit state	$\delta_{N,eq,seis(ULS)}$	[mm]	0,66	1,70	0,93			
Displacement in shear at damage limitation states	$\delta_{V,eq,seis(DLS)}$	[mm]	0,81	2,39	2,21			
Displacement in shear at ultimate limit state	$\delta_{V,eq,seis(ULS)}$	[mm]	4,29	7,29	7,42			

BOSSONG BCR EPOXY 21

Performances Characteristic resistance under tension and shear loads for threaded rod for seismic action category C2 Annex C6 of European Technical Assessment ETA-11/0344